Photolyses of 1,4-Bis(1,1-diarylhept-2-ynyl)benzenes and 1,4-Bis(1,1-diarylalkyl)benzenes

Min Shi, Yoshiki Okamoto * and Setsuo Takamuku

The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan 567

Photolyses of 1,4-bis(1,1-diarylhept-2-ynyl)benzenes or 1,4-bis(1,1-diarylalkyl)benzenes 2 in a tetrahydrofuran-methanol mixture gave 1-biphenyl-4-yl-1,1-diarylhept-2-ynes or 1-biphenyl-4-yl-1,1-diarylalkanes 3 as major products and biaryls 1 as minor products. The products 3 were obtained with quantum yields of $0.010-0.020$, respectively.

Our recent studies on the photochemical reactions of triphenylmethane derivative such as dimethyl triphenylmethylphosphonate, 1,1,1-triphenylhept-2-yne, and triphenylalk-2-ene in methanol have shown that they undergo a photochemical $\alpha, \alpha-$ elimination of two phenyl groups to afford biphenyl 1a and the corresponding carbene intermediates, with quantum yields of $0.010-0.020{ }^{1 a-c}$

This finding prompted us to study further the photochemical reaction of other triphenylmethane derivatives. Here, we report the photolyses of some 1,4-bis(1,1-diarylhept-2-ynyl)benzene 2a, e, f and 1,4-bis(1,1-diphenylalkyl)benzenes $\mathbf{2 b - d}$.

Results and Discussion

Photolysis of 1,4-bis(1,1-diphenylhept-2-ynyl)benzene 2a in tetrahydrofuran (THF)-methanol under an argon atmosphere with a high pressure mercury lamp (300 W) for 2 h gave 1-bi-phenyl-4-yl-1,1-diphenylhept-2-yne 3a and 1-methoxy-1-phen-ylhept- 2 -yne 4 a in 30 and 28% yields, respectively. Compound $4 \mathbf{a}$ was derived from the insertion of the carbene $5 a$ into the O-H bond of methanol. Biphenyl 1a was also obtained in a yield of only 2.2% (Scheme 1). The quantum yield of 3a was 0.022 . Photolysis of 1,4 -bis(2-methyl-1,1-diphenylpropyl)benzene $\mathbf{2 b}$ or 1,4 -bis(cyclohexyldiphenylmethyl)benzene $\mathbf{2 c}$ under the same conditions gave, similarly, 1-biphenyl-4-yl-2-methyl-

1,1-diphenylpropane 3b or biphenyl-4-yl(cyclohexyl)diphenylmethane 3c, 1-methoxy-2-methyl-1-phenylpropane 4 b or cyclohexyl(methoxy)phenylmethane 4 c , and 2-methyl-1-phenylpropene $6 \mathbf{b}$ or α-cyclohexylidenetoluene $\mathbf{6 c}$, respectively. The products $\mathbf{4 b}$ or $\mathbf{4 c}$ and $\mathbf{6 b}$ or $\mathbf{6 c}$ must be derived from the insertion of the carbene intermediate 5 b or 5 c into the $\mathrm{O}-\mathrm{H}$ bond of methanol or from the 1,2-hydrogen shift in 5 b or $5 \mathbf{c}$, respectively (Scheme 1). In contrast, 1,4-bis(1,1-diphenylpropyl)benzene 2d underwent little photolysis, only a trace of a complex and unidentified mixture, being obtained. This result is similar to those for the photolysis of 2-methyl-1,1,1-triphenylpropane, which gave 1a in a quantum yield of 0.013 , and 1,1,1-triphenylethane which failed to give any 1a. ${ }^{1 c}$ The yields of products are summarized in Table 1.

Previously, and in a similar fashion, it was postulated that photochemical formation of the carbene intermediate 5 from 1,1,1-triphenylhept-2-yne occurred as a result of α, α-elimination of the two phenyl groups. ${ }^{1 b}$ Upon UV irradiation, there is intramolecular charge transfer interaction between the three aryl groups of the triphenylmethyl substituent and, subsequently, the biphenyl $\mathbf{1 a}$ is formed via initial bonding between the $\mathrm{C}-1$ positions of two phenyl groups (ipso coupling) followed by α, α-elimination. This photoinduced intramolecular elimination of la may proceed via an excited singlet state $\left(S_{1}\right) .^{1 c, 2-5}$

In the photolysis of $\mathbf{2 a - d}$, a similar mechanism is thought to

Scheme 1

Table 1 Photolysis of $\mathbf{2 a - c}$ in THF and MeOH

Compd.	$\begin{aligned} & \text { Conversion } b \end{aligned}$	φ^{c}	Product [yield (\%)] ${ }^{\text {a }}$			
			1a	3	4	6
2a	55	0.022	1 a (2.2)	3a (30)	4a (28)	-
2b	50	0.018	1a (2.4)	3b (26)	4 b (15)	6b (10)
2 c	51	0.016	1a (2.0)	3c (24)	4 c (10)	6c (14)
2 e	60	0.029	1e (3.0)	3e (35)	4e (34)	(1)
2 f	70	0.040	1f (1.3)	3f (44)	4f (41)	-

${ }^{a}$ The yield was based on the starting material used. ${ }^{b}$ Concentration; $1.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$, irradiated in a quartz tube for 2 h . ${ }^{c}$ The quantum yield of 3 .
occur, although the yield of $\mathbf{3 a}(30 \%)$ was much larger than that of $\mathbf{1 a}(2.2 \%)$. This selective elimination of aryl groups indicates that coupling between the phenyl and the 1,4 -phenylene groups predominates; the phenyl group may have a stronger interaction with a 1,4 -phenylene group than another phenyl group.

Terphenyl, which may be derived by coupling of the phenyl and the biphenylyl groups of $\mathbf{3 a - c}$ upon further irradiation, could not be detected. Attempted photolysis of $\mathbf{3 a - c}$, prepared by an alternative method, showed the compounds to be quite stable even upon a prolonged irradiation. Although the absorption maxima of $2 \mathbf{a}-\mathbf{c}$ and $\mathbf{3 a - c}$ look very similar, the latter absorb well into the long-wavelength region. This suggests that introduction of a biphenylyl group into the molecule might result in a lowering of its excited energy level. ${ }^{6}$ As the result, α, α-elimination of these aryl groups cannot occur.

We have further studied the photolysis of other para-substituted compounds, $\mathbf{2 e}$ or $\mathbf{2 f}$, under similar conditions, and obtained similar results (Scheme 1). The product 3e or 3 f was formed in 35 or 44% yield respectively, after irradiation for 2 h . The counter products, $\mathbf{4 e}$ or $\mathbf{4 f}$, which were similarly derived from insertion of the corresponding carbene intermediate $\mathbf{5 e}-\mathbf{f}$ into the $\mathrm{O}-\mathrm{H}$ bond of methanol, were obtained in an almost equivalent yields to those of 3 e and $\mathbf{3 f}$, respectively. The biaryls 1e-f were also obtained in very small yield. The quantum yields of 3 e and 3 f were 0.029 and 0.040 , respectively, which were larger than that of 3 a in the photolysis of the unsubstituted derivative $\mathbf{2 a}$. These facts also suggest that by introducing a substituent into the benzene ring, an inter-ring charge-transfer interaction between the benzene ring and the 1,4 -phenylene ring might be increased and, subsequently, the efficiency of the biaryl elimination is enhanced.

Experimental

M.p.s and b.p.s are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL FX-90Q spectrometer, with CDCl_{3} as a solvent and tetramethylsilane as an internal standard, J values are given in Hz .

Preparation of 2a-f. General Procedure.--Compounds 2a-f were prepared by the reaction of 1,4 -bis(chlorodiarylmethyl)benzene ($5 \mathrm{~g}, 10.5 \mathrm{mmol}$) with an ethereal solution of the corresponding alkyl- or alkynyl-magnesium bromide (30.0 mmol), respectively. ${ }^{7}$ After work-up, the crude products were recrystallized from benzene-methanol to give crystalline products.

1,4-Bis(1,1-diphenylhept-2-ynyl)benzene 2a. ($4.0 \mathrm{~g}, 70 \%$), m.p. $120-122{ }^{\circ} \mathrm{C}$ (Found: C, 92.6; H, 7.5. $\mathrm{C}_{44} \mathrm{H}_{42}$ requires $\mathrm{C}, 92.58$; $\mathrm{H}, 7.42 \%) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 261(\varepsilon 880) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2180$ $(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; \mathrm{TMS}\right) 0.91(6 \mathrm{H}, \mathrm{t}, J 7.3), 1.40-1.70(8 \mathrm{H}, \mathrm{m})$, $2.34(4 \mathrm{H}, \mathrm{t}, J 7.3)$ and $7.0-7.50(24 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.

1,4-Bis(2-methyl-1,1-diphenylpropyl)benzene 2b. (3.9 g, 80%), m.p. $166-168^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 92.1 ; \mathrm{H}, 7.75 . \mathrm{C}_{38} \mathrm{H}_{38}$ requires C , $92.26 ; \mathrm{H}, 7.7 \%) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 262(\varepsilon 1000) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $1620(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.87\left(12 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CH}_{3}\right), 3.56(2 \mathrm{H}$, sept, $J 6.3$ and $6.90-7.50(24 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.

1,4-Bis(cyclohexyldiphenylmethyl)benzene 2c. (3.4 g, 60\%), m.p. $180-182{ }^{\circ} \mathrm{C}$ (Found: C, 91.65 ; H, 8.2. $\mathrm{C}_{44} \mathrm{H}_{48}$ requires C , $91.61 .34 ; \quad \mathrm{H}, \quad 8.39 \%) ; \quad \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} \quad 261 \quad(\varepsilon \quad 890)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1620(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.45-2.10(20 \mathrm{H}, \mathrm{m})$, $3.04(2 \mathrm{H}, \mathrm{t}, J 11.2)$ and $6.90-7.50(24 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.

1,4-Bis(1,1-diphenylpropyl)benzene 2d. ($3.7 \mathrm{~g}, 80 \%$), m.p. 201$203{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 92.8 ; \mathrm{H}, 7.3 . \mathrm{C}_{36} \mathrm{H}_{34}$ requires $\mathrm{C}, 92.66 ; \mathrm{H}$, $7.34 \%) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 261$ ($\varepsilon 1000$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1620$ $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.10\left(6 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{CH}_{3}\right), 1.23(4 \mathrm{H}, \mathrm{q}, J 6.4$, $\left.\mathrm{CH}_{2}\right)$ and $6.90-7.50(24 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.

1,4-Bis[1,1-di(p-tolyl)hept-2-ynyl]benzene 2e. (4.4 g, 70\%), m.p. $145-148{ }^{\circ} \mathrm{C}$ (Found: C, $91.9 ; \mathrm{H}, 8.1 . \mathrm{C}_{48} \mathrm{H}_{50}$ requires C , 91.96; $\mathrm{H}, 8.04 \%$); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 266(\varepsilon 1400) ; v_{\max }($ neat $) / \mathrm{cm}^{-1}$ $2182(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91(6 \mathrm{H}, \mathrm{t}, J 7.3), 1.40-1.70(8 \mathrm{H}, \mathrm{m})$, $2.34(4 \mathrm{H}, \mathrm{t}, J 7.3), 2.26\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $7.0-7.50(20 \mathrm{H}$, m).

1,4-Bis[1,1-bis(p-methoxyphenyl)hept-2-ynyl]benzene 2f. (4.8 g, 71%), m.p. $187-188^{\circ} \mathrm{C}$ (Found: C, 83.35; H, 7.4. $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{O}_{4}$ requires $\mathrm{C}, 83.44 ; \mathrm{H}, 7.29 \%$); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 275$ ($\varepsilon 2300$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2182(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91(6 \mathrm{H}, \mathrm{t}, J 7.3), 1.40-$ $1.70(8 \mathrm{H}, \mathrm{m}), 2.34(4 \mathrm{H}, \mathrm{t}, J 7.3), 3.76\left(12 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $7.0-$ $7.50(20 \mathrm{H}, \mathrm{m})$.

General Procedure for Photolyses.--Photolyses were carried out in the same manner as described previously. ${ }^{1}$ A mixture of THF and methanol ($1: 1$) was used as solvent, because of low solubilities of compounds $\mathbf{2 a}-\mathbf{f}$ and $\mathbf{4 a - f}$ in pure methanol.

The methyl ethers $\mathbf{4 a}-\mathbf{f}$ and benzylidene derivatives $\mathbf{6 b}, \mathbf{c}$ were prepared in the same manner as described previously. ${ }^{1 c}$

Preparation of 3a-f. General Procedure.-Compounds 3a-f were prepared by the reaction of biphenyl-4-yl(diphenyl)meth-yl-4'-methylbiphenyl-4-yl-1,1-di(p-tolyl)methyl-, or 4-methoxy-biphenyl-4-yl-1,1-bis(p-methoxyphenyl)methyl chloride $(6.0 \mathrm{~g}$, 17.2 mmol) with ethyl-, isopropyl-, cyclohexyl-, or hex-1-ynylmagnesium bromide, respectively. After work-up, the crude products were recrystallized from benzene-methanol.

1-Biphenyl-4-yl-1,1-diphenylhept-2-yne 3a. ($2.4 \mathrm{~g}, 60 \%$), m.p. 124-126 ${ }^{\circ} \mathrm{C}$ (Found: C, $92.75 ; \mathrm{H}, 7.1 . \mathrm{C}_{31} \mathrm{H}_{28}$ requires $\mathrm{C}, 92.95$; $\mathrm{H}, 7.05 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2184(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 258(\varepsilon$ $24500) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{t}, J 7.3), 1.40-1.70(4 \mathrm{H}, \mathrm{m}), 2.34(2$ $\mathrm{H}, \mathrm{t}, J 7.3)$ and $7.0-7.50(19 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.

1-Biphenyl-4-yl-1,1-diphenyl-2-methylpropane $\mathbf{3 b} .(3.0 \mathrm{~g}$, 65%), m.p. $168-170^{\circ} \mathrm{C}$ (Found: C, $92.65 ; \mathrm{H}, 7.4 . \mathrm{C}_{28} \mathrm{H}_{26}$ requires $\mathrm{C}, 92.77 ; \mathrm{H}, 7.23 \%$); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 260(\varepsilon 23500)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1620(\mathrm{C}=\mathrm{C}), \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.87(6 \mathrm{H}, \mathrm{d}, J 6.3$, $\left.\mathrm{CH}_{3}\right), 3.56(1 \mathrm{H}$, sept, $J 6.3)$ and $6.90-7.50(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.
[Biphenyl-4-yl(diphenyl)methyl]cyclohexane 3c. ($2.6 \mathrm{~g}, 60 \%$), m.p. $174-176{ }^{\circ} \mathrm{C}$ (Found: C, 92.65; H, 7.4. $\mathrm{C}_{31} \mathrm{H}_{30}$ requires C , $92.49 ; \mathrm{H}, 7.51 \%) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} \quad 260(\varepsilon 25000) ; v_{\max }{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1620(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.45-2.10(10 \mathrm{H}, \mathrm{m}), 3.04(1$ $\mathrm{H}, \mathrm{t}, J 11.2)$ and $6.90-7.50(12 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.

1-(4'-Methylbiphenyl-4-yl)-1,1-di(p-tolyl)hept-2-yne 3e. (2.7 g, 61%), m.p. $123-124{ }^{\circ} \mathrm{C}$ (Found: C, 92.35; H, 7.65. $\mathrm{C}_{34} \mathrm{H}_{34}$
requires $\mathrm{C}, 92.26 ; \mathrm{H}, 7.74 \%$; ; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 265(\varepsilon 26000)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2186(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{t}, J 7.3)$, $1.40-1.70(4 \mathrm{H}, \mathrm{m}), 2.34(2 \mathrm{H}, \mathrm{t}, J 7.3), 2.26\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $7.0-7.50(16 \mathrm{H}, \mathrm{m})$.

1-(4'-Methoxybiphenyl-4-yl)-1,1-bis(p-methoxyphenyl)hept-2-yne 3f. ($2.4 \mathrm{~g}, 60 \%$) m.p. $144-146^{\circ} \mathrm{C}$ (Found: C, 83.1; H, 7.0. $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{PO}_{3}$ requires C, $83.23 ; \mathrm{H}, 6.99 \%$); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 275$ $(\varepsilon 32000) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2182(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{t}, J$ $7.3), 1.40-1.70(4 \mathrm{H}, \mathrm{m}), 2.34(2 \mathrm{H}, \mathrm{t}, J 7.3), 3.76\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $7.0-7.50(16 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.

Measurement of the Quantum Yield.-The quantum yields were determined in a similar manner to that described previously. ${ }^{1.8}$

Acknowledgements

This work was supported by a grant from the Research Program on 'Creation of New Materials through Intelligent Design' of ISIR, Osaka University.

References

1 (a) M. Shi, Y. Okamoto and S. Takamuku, J. Chem. Soc., Chem. Commun., 1989, 151; (b) M. Shi, Y. Okamoto and S. Takamuku, Chem. Lett., 1989, 1297; (c) M. Shi, Y. Okamoto and S. Takamuku, J. Org. Chem., 1990, 55, 3821.
2 H. Iwamura and K. Yoshimura, J. Am. Chem. Soc., 1974, 96, 2652.
3 S. S. Hixson, P. S. Mariano and H. E. Zimmerman, Chem. Rev., 1973, 73, 531.
4 (a) T. D. Walsh and D. R. Powers, Tetrahedron Lett., 1970, 3855; (b) M. Shi, Y. Okamoto and S. Takamuku, Bull. Chem. Soc. Jpn., 1990, 63, 2731.
5 J. Ipaktshi, Chem. Ber., 1989, 105, 1972.
6 N. J. Turro, Modern Molecular Photochemistry, The Benjamin/Cummings Publishing Co. Inc., California, 1978, ch. 9, p. 296.
7 G. L. Sloan and W. R. Vaughan, J. Org. Chem., 1957, 22, 750.
8 S. L. Murov, Handbook of Photochemistry, Marcel Dekker, 1973, p. 119.

Paper 1/02068D
Received 1st May 1991
Accepted 11 th June 1991

